81 research outputs found

    Mejora de la difusión de contenidos culturales del patrimonio mediante modelos virtuales 3dD y realidad aumentada: una aplicación a los artefactos romanos

    Full text link
    [EN] The spatial characteristics of museum exhibitions may limit visitors’ experience of the artefacts on display. In the case of large artefacts, limited space may affect their whole visualization, or inhibit the visualization of the details farthest from the observer. In other cases, the storage of artefacts in distant sites (museums or archaeological areas) may influence their knowledge process or the possibility for comparative analysis. Moreover, the precarious state of preservation of some artefacts, with damaged or missing parts, makes it difficult to perceive their original appearance. To overcome these limitations, we propose an integrated approach based on 3D virtual models and Augmented Reality (AR) to enhance the fruition of artefacts, improving their visualization, analysis and personal/shared knowledge, also by overcoming space and time constraints. The final AR application is an easily accessible tool for most users from a mobile device, used both inside and outside museums, opening new perspectives for fruition. The framework encourages the use of free and open source software and standard devices, to maximize their dissemination and exploit the potential of such technologies, which is far greater than current use in the cultural heritage field. Selected case studies to test and validate the integrated framework are proposed, dealing with some Roman artefacts found in the area of Modena (Italy). The first is a Roman floor mosaic, found in Savignano sul Panaro (near Modena) in 2011, of which less than half of its original 4.5 x 6.9 m surface is preserved. The others are two Roman funerary lion sculptures: the first is one of two lions flanking the main door of Modena Cathedral, and the second, well-preserved but damaged, is housed in the Museo Lapidario Estense of Modena. Finally, the application was tested by museum experts and visitors both inside and outside the museum, and positively assessed. Highlights: Digital practice is not understood as a prerogative of a small number of people, but as a tool to guarantee and expand artefact fruition, using standard devices and free and open source software. Experimentation of new settings to re-contextualize artefacts and establish possible links among them, offering engaging and customized experiences to improve their accessibility and enjoyment. Promotion of artefact fruition not only in but also outside museums, such as in a classroom or an open and shared space, opening to new approaches in the fruition of cultural heritage.[ES] Las características espaciales de la exhibición en museos puede limitar en los visitantes la experiencia de los artefactosque se presentan. En el caso de artefactos de gran tamaño, la limitación de espacio puede afectar su visualización completa o inhibir la visualización de los detalles más lejanos al observador. En otros casos, el almacenamiento de artefactos en sitios lejanos y apartados (museos o zonas arqueológicas) puede influir en su proceso de conocimiento o en su análisis comparativo. Es más, el precario estado de conservación de algunos artefactos, con partes dañadas o perdidas, hace difícil percibir su aspecto original. Para superar estas limitaciones, proponemos un enfoque integrado de modelos 3D y realidad aumentada (RA) que mejore el disfrute de los artefactos, mejorando su visualización, análisis y conocimiento personal/compartido, incluso sobrepasando las limitaciones de espacio y tiempo. La aplicación final es una herramienta fácilmente accesible para la mayoría de usuarios mediante un portátil, que se use dentro, pero también fuera de los museos, abriendo nuevas perspectivas de disfrute. El enfoque promueve el uso de software libre y gratuito y herramientas estándar, con vistas a maximizar su amplia distribución y reivindicar las potencialidades de dichas tecnologías, que son superiores a su actual uso en el campo del patrimonio cultural. Se proponen casos de estudio seleccionados para testear y validar el enfoque integrado, a partir de algunos artefactos Romanos encontrados en la zona de Módena (Italia). El primero es un suelo de mosaico Romano, encontrado en Savignano sul Panaro (cerca de Módena) en 2011, que conserva menos de la mitad de sus 4.5 x 6.9 m de superficie originales. Los otros son dos esculturas funerarias romanas de león: el primero es uno de los dos leones que flanquean la puerta principal de la Catedral de Módena, y el segundo, bien conservado pero dañado, se almacena en el Museo Lapidario Estense de Módena. Finalmente, la aplicación se prueba por expertos del museo y visitantes dentro y fuera del museo, y se evalúa positivamente.Gherardini, F. (2019). Enhancing heritage fruition through 3D virtual models and augmented reality: an application to Roman artefacts. Virtual Archaeology Review. 10(21):67-79. https://doi.org/10.4995/var.2019.11918SWORD67791021Antinucci, F. (2014). Comunicare nel Museo. Roma-Bari, Italy: Laterza, pp. 117-124.Bici, M., Guachi, R., Colacicchi, O., D'Ercoli, G., & Campana, F. (2019). Posture evaluation for fragment re-alignment of ancient bronze statues: The case study of the Principe Ellenistico. In F. Cavas-Martínez, B. Eynard, F. Fernández Cañavate, D. Fernández-Pacheco, P. Morer, & V. Nigrelli (Eds.), Advances on mechanics, design engineering and manufacturing II. Lecture notes in mechanical engineering (pp 323-335). Cham: Springer. https://doi.org/10.1007/978-3-030-12346-8_32Black, G. (2005). The Engaging Museum: Developing Museums for Visitor Involvement (pp. 179-210). London, UK:Routledge.Blanco-Pons, S., Carrión-Ruiz, B., & Lerma, J.L. (2019) Augmented reality application assessment for disseminating rock art. Multimedia Tools and Applications, 78(8), 10265-10286. https://doi.org/10.1007/s11042-018-6609-xBrawne, M. (1965). The New Museum: Architecture and Display. New York, US: Praeger.Caspani, S., Brumana, R., Oreni, D., & Previtali, M. (2017). Virtual museums as digital storytellers for dissemination of built environment: Possible narratives and outlooks for appealing and rich encounters with the past. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 113-119. https://doi.org/10.5194/isprs-archives-XLII-2-W5-113-2017Castagnetti, C., Giannini, M., & Rivola, R. (2017). Image-based virtual tours and 3d modeling of past and current ages for the enhancement of archaeological parks: The visual versilia 3d project. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5/W1, 639-645. https://doi.org/10.5194/isprs-rchives-XLII-5-W1-639-2017Charitos, D., Lepouras, G., Vassilakis, C., Katifori, V., & Halatsi, L. (2000). A method for designing and implementing virtual museums. In R. Hollands (Ed.), Proceedings 7th International UK VR-SIG Conference, Glasgow, UK.Corti, C. (2001). Atlante dei Beni Archeologici della Provincia di Modena. III, Collina e Alta Pianura. Book 1, (pp. 190-191). Sesto Fiorentino (Firenze), Italy: All'Insegna del Giglio.Crespellani, A. (1899). Scavi nel Modenese (1896-1897). AMDST Province Modenesi Serie IV, IX, pp 269-288.Fazio, L., Lo Brutto, M., & Dardanelli, G. (2019). Survey and virtual reconstruction of ancient Roman floors in an archaeological context. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 511-518. https://doi.org/10.5194/isprs-archives-XLII-2-W11-511-2019Fields, N. (2018). Mutina 43 BC: Mark Antony's Struggle for Survival. Oxford, UK: Osprey Publishing.Gherardini, F., Santachiara, M., & Leali, F. (2018). 3D virtual reconstruction and augmented reality visualization of damaged stone sculptures. IOP Conference Series: Materials Science and Engineering, 364(1), 012018. https://doi.org/10.1088/1757-899X/364/1/012018Giordani, N., & Paolozzi Strozzi, G. (2005). Il Museo Lapidario Estense, Catalogo generale. Venezia, Italy: Marsilio Editore.Glover J. (2018). Unity 2018 Augmented Reality Projects: Build four immersive and fun AR applications using ARKit, ARCore, and Vuforia. Birmingham, UK: Packt Publishing Limited.Guidi, G., Trocchianesi, R., Pils, G., Morlando, G., & Seassaro, A. (2010). A Virtual Museum for Design: New forms of interactive fruition. 16th International Conference on Virtual Systems and Multimedia, VSMM 2010 (pp. 242-249). https://doi.org/10.1109/VSMM.2010.5665977Guidi, G., & Remondino, F. (2012). 3D modelling from real data. In C. Alexandru (Ed.), Modeling and Simulation in Engineering (pp. 69-102). https://doi.org/10.5772/30323ICOM, International Council of Museums (n.d.). Museum Definition. Retrieved from https://icom.museum/en/activities/standards-guidelines/museum-definitionKleinhenz, C. (2004). Routledge Revivals: Medieval Italy (2004): An Encyclopedia (Vol. II). New York: Routledge.Krukar, J. (2014). Walk, look, remember: The influence of the gallery's spatial layout on human memory for an art exhibition. Behavioral Sciences, 4(3), 181-201. https://doi.org/10.3390/bs4030181Lanham, M. (2018). Learn ARCore - Fundamentals of Google ARCore: Learn to build augmented reality apps for Android, Unity, and the web with Google ARCore 1.0. Birmingham, UK: Packt Publishing Limited.Linowes, J. & Babilinski, K. (2017). Augmented Reality for Developers. Birmingham, UK: Packt Publishing Limited.Lo Brutto, M., Garraffa, A., Pellegrino, L., & Di Natale, B. (2015). 3D Mosaic documentation using close range photogrammetry. Proceedings of the 1st International Conference on Metrology for Archaeology (pp. 82-87). Benevento, Italy.Ludovico A., (2012). Augmented Art. In Communication Strategies Lab (Ed.), Realtà aumentate: esperienze, strategie e contenuti per l'Augmented Reality (pp. 109-133). Milano, Italy: Apogeo Education.Luigini, A., Brusaporci, S., Vattano, S., & Tata, A. (2019). 3D digital models for a widespread museum: the Renon's "Bauernhöfe". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 447-453. https://doi.org/10.5194/isprs-archives-XLII-2-W9-447-2019Maícas, J. M., & Viñals, M. J. (2017). Design of a virtual tour for the enhancement of Llíria's architectural and urban heritage and its surroundings. Virtual Archaeology Review, 8(17), 42-48. https://doi.org/10.4995/var.2017.5845Maioli, M. G. (2013). I mosaici di Savignano Il mosaico ritrovato. Indagini archeologiche a Savignano sul Panaro. Firenze, Italy: All'insegna del Giglio. pp 55-65.Malmusi, C. (1930). Museo Lapidario Modenese. Modena, Italy: Franco Cosimo Panini.Noh, Z., Shahrizal, M., & Pan, Z. (2009). A review on augmented reality for virtual heritage system. In M. Chang, R. Kuo et al. (Eds.), Learning by playing. game-based education system design and development (pp. 50-61). Heidelberg, Germany: Springer.Ouimet, C., Gregga, J., Kretz, S., Chandler, C. A., & Hayes, J. (2015). Documentation and dissemination of the sculptural elements of Canada's parliamentary buildings: methodology development and evolution, a case study. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7, 347-352. https://doi.org/10.5194/isprsarchives-XL-5-W7-347-2015Parras, D., Cavas-Martínez, F., Nieto, J., Cañavate, F.J.F., & Fernández-Pacheco, D.G. (2018). Reconstruction by low cost software based on photogrammetry as a reverse engineering process. Lecture Notes in Computer Science, Vol. 10909, 145-154. https://doi.org/10.1007/978-3-319-91581-4_11Polycarpou, C. (2018). The ViMM Definition of a Virtual Museum. Retrieved from https://www.vi-mm.eu/2018/01/10/thevimm-definition-of-a-virtual-museum/Psarra, S. (2005). Spatial culture, way-finding and the educational message: the impact of layout on the spatial, social and educational experiences of visitors to museums and galleries. In S. Macleod (Ed.), Reshaping museum space (pp. 78-94). London, UK: Imprint Routledge.Purnomo, F. A., Santosa, P. I., Hartanto, R., Pratisto, E. H., & Purbayu, A. (2018). Implementation of augmented reality technology in Sangiran Museum with Vuforia. IOP Conference Series: Materials Science and Engineering, 333(1). https://doi.org/10.1088/1757-899X/333/1/012103Rebecchi, F. (1984). Il reimpiego di materiale antico nel Duomo di Modena. In Lanfranco e Wiligelmo. Il Duomo di Modena, catalogo della mostra (luglio 1984, febbraio 1985)(pp. 319-353). Modena, Italy:Edizioni Panini.Rees Lehay, H. (2005). Producing a public for art: gallery space in the twenty-first century. In S. Macleod (Ed.), Reshaping museum space (pp. 9-25). London, UK: Imprint Routledge.Rojas-Sola, J. I., & de la Morena-de la Fuente, E. (2018). Digital 3D reconstruction of Betancourt's historical heritage: The dredging machine in the port of Kronstadt. Virtual Archaeology Review, 9(18), 44-56. https://doi.org/10.4995/var.2018.7946Sandonnini, T. (1983). Cronaca dei restauri del Duomo di Modena (1897-1925) (pp. 145-149). Modena, Italy: Aedes Muratoriana.Santachiara, M., Gherardini, F., & Leali, F. (2018). An augmented reality application for the visualization and the pattern analysis of a Roman mosaic. IOP Conference Series: Materials Science and Engineering, 364(1), 012094. https://doi.org/10.1088/1757-899X/364/1/012094Santos, P., Ritz, M., Fuhrmann, C., & Fellner, D. (2017). 3D mass digitization: A milestone for archaeological documentation. Virtual Archaeology Review, 8(16), 1-11. https://doi.org/10.4995/var.2017.6321Scopigno, R., Corsini, M., Callieri, M., & Dellepiane, M. (2011). Using digital 3D models for study and restoration of cultural heritage artifacts. In F. Stanco, S. Battiato et al (Eds.), Digital imaging for cultural heritage preservation: Analysis, restoration, and reconstruction of ancient artworks (pp. 353-384). Boca Raton, US: CRC Press. 13Screven, C. (1986). Exhibitions and information centers: some principles and approaches. Curator, 29(2), 109-37. https://doi.org/10.1111/j.2151-6952.1986.tb01433.xShackley, M. (1999). Visitor management. In A. Leaske, & I. Yeoman (Eds.), Heritage visitor attractions: An operations management perspective (pp. 69-82). London, UK: Cassells.Skolnick, L. H. (2005). Towards a new museum architecture: Narrative and representation. In S. Macleod (Ed.), Reshaping Museum Space (pp. 118-130). London, UK: Imprint Routledge.Sylaiou, S., Liarokapis, F., Kotsakis, K., & Petros, P. (2009). Virtual museums, a survey and some issues for consideration. Journal of Cultural Heritage, 10(4), 520-528. https://doi.org/10.1016/j.culher.2009.03.003Tsichritzis, D., & Gibbs, S. (1991). Virtual museums and virtual realities. Proceedings of the International Conference on Hypermedia and Interactivity in Museums. Pittsburgh, US.Tucci, G., Cini, D., & Nobile, A. (2011). Effective 3D digitization of archaeological artifacts for interactive virtual museum. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5W16, 413-420. https://doi.org/10.5194/isprsarchives-XXXVIII-5-W16-413-2011Tucci, G., Bonora, V., Conti, A., & Fiorini, L. (2017). High-quality 3D models and their use in a cultural heritage conservation project. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2W5, 687-693. https://doi.org/10.5194/isprs-archives-XLII-2-W5-687-2017V-MUST, Virtual Museum Transnational Network. (n.d.) What is a Virtual Museum? Retrieved from http://www.vmust.net/virtual-museums/what-virtual-museumValente, R., Brumana, R., Oreni, D., Banfi, F., Barazzetti, L., & Previtali, M. (2017). Object-oriented approach for 3D archaeological documentation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information ciences, XLII-2-W5, 707-712. https://doi.org/10.5194/isprs-archives-XLII-2-W5-707-2017Vergo, P. (1989). Introduction. In P. Vergo (Ed.), The New Museology (pp.1-5). London, UK: Reaktion Books.Volpe, Y., Furferi, R., Governi, L., & Tennirelli, G. (2014). Computer-based methodologies for semi-automatic 3D model generation from paintings. International Journal of Computer Aided Engineering and Technology, 6(1), 88-112. https://doi.org/10.1504/IJCAET.2014.058012Wilson, P. F., Stott, J., Warnett, J. M., Attridge, A., Smith, M. P., & Williams, M. A. (2018). Evaluation of touchable 3Dprinted replicas in museums. Curator: The Museum Journal, 60(4), 445-465. https://doi.org/10.1111/cura.12244Younes, G., Kahil, R., Jallad, M., Asmar, D., Elhajj, I., Turkiyyah, G., & Al-Harithy, H. (2017). Virtual and augmented reality for rich interaction with cultural heritage sites: A case study from the Roman Theater at Byblos. Digital Applications in Archaeology and Cultural Heritage, 5, 1-9. https://doi.org/10.1016/j.daach.2017.03.00

    A Framework for 3D Pattern Analysis and Reconstruction of Persian Architectural Elements

    Get PDF
    Persian architecture is characterised by shapes and patterns, which can be analysed through mathematical models. Beside 2D patterns, many of the traditional geometric ornaments are realised on 3D surfaces such as domes or vaults. Literature mainly addresses the 3D problem by means of a 2D scheme, which is an important and synthetic representation but is not exhaustive and lacks of clarity. This paper proposes a framework based on the integration of 2D drawings, as in the traditional approach, and a photogrammetric 3D model based on a sample of standard resolution images (tourist pictures). The framework is tested on a muqarnas, a characteristic Persian ornament, in order to study and analyse its modular design and hierarchy of elements. As a case study, the entrance iwan of the Shah Mosque in Isfahan, Iran, is considered. The result is a link between the 3D patterns and the geometry of architectural elements, which completes and overcomes their schematic 2D representation

    3D Virtual Reconstruction and Augmented Reality Visualization of Damaged Stone Sculptures

    Get PDF
    This paper proposes the integration of photogrammetric reconstruction, 3D modelling and augmented reality application in order to achieve the complete visualization of a stone sculpture even if highly damaged or fragmentary. The first part of the research aims to the reconstruction of the original aspect of an incomplete sculpture, by using photogrammetry techniques based on standard resolution photos and free software in order to obtain a first model; then, we integrate this model with other 3D digital data (from other sculptures of the same period) or with 3D modelling based on historical sources and views from historians, aiming to achieve the original aspect of the sculpture. The second part of the research consists of the embedding of the obtained model in a custom application able to render in real-time the 3D reconstruction of the lion. Then, the rendering is overlaid to the video stream of the real scene and, as a result, a complete 3D digital model of the sculpture is achieved and could be visualized through a VR viewer. As a case study, we focus on a Roman stone sculpture of a male lion conserved in the Museo Estense of Modena (Italy), which lacks of its head and its four legs. The original aspect of the lion may be achieved by integrating the damaged sculpture with other photogrammetric reconstructions of lions sculptures of the same period and with 3D model based on historical sources. Finally, the lion is visualized through an augmented reality application which digitally overlays the reconstructed models on the original one

    Enhancing heritage fruition through 3D virtual models and augmented reality: An application to Roman artefacts

    Get PDF
    The spatial characteristics of museum exhibitions may limit visitors' experience of the artefacts on display. In the case of large artefacts, limited space may affect their whole visualization, or inhibit the visualization of the details farthest from the observer. In other cases, the storage of artefacts in distant sites (museums or archaeological areas) may influence their knowledge process or the possibility for comparative analysis. Moreover, the precarious state of preservation of some artefacts, with damaged or missing parts, makes it difficult to perceive their original appearance. To overcome these limitations, we propose an integrated approach based on 3D virtual models and Augmented Reality (AR) to enhance the fruition of artefacts, improving their visualization, analysis and personal/shared knowledge, also by overcoming space and time constraints. The final AR application is an easily accessible tool for most users from a mobile device, used both inside and outside museums, opening new perspectives for fruition. The framework encourages the use of free and open source software and standard devices, to maximize their dissemination and exploit the potential of such technologies, which is far greater than current use in the cultural heritage field. Selected case studies to test and validate the integrated framework are proposed, dealing with some Roman artefacts found in the area of Modena (Italy). The first is a Roman floor mosaic, found in Savignano sul Panaro (near Modena) in 2011, of which less than half of its original 4.5 x 6.9 m surface is preserved. The others are two Roman funerary lion sculptures: the first is one of two lions flanking the main door of Modena Cathedral, and the second, well-preserved but damaged, is housed in the Museo Lapidario Estense of Modena. Finally, the application was tested by museum experts and visitors both inside and outside the museum, and positively assessed

    Os efeitos generativos das crises econômicas: o caso do sistema de inovação italiano

    Get PDF
    This article seeks to shed light on the profound changes taking place in the Italian innovation system. While the system ensured sustained growth until the Eighties, the country’s competitiveness in the high and medium-high tech sectors was eroded by the shift from Fordism to post-Fordism. Recently, however, there have been signs that firms are once again showing an appetite for innovation, and that there is a renewed commitment on the part of the state to supporting business’ technological advances and digitalization. After detailing the distinctive features of the Italian innovation system, we describe the striking improvements in digital propensity and capacity for innovation that Italian firms have made in recent years. On the whole, as we show, the Italian economic system has benefited from “generative dynamics” triggered, first, by the Great Recession of 2008 and, later, by the 2020 pandemic crisis. In addition, we discuss the role of public policies in promoting the Italian innovation system with a specific focus on medium-high tech manufacturing.Este artículo busca arrojar luz sobre los profundos cambios que se están produciendo en el sistema de innovación italiano. Si bien el sistema aseguró un crecimiento sostenido hasta los años ochenta, la competitividad del país en los sectores de alta y media alta tecnología se vio erosionada por el paso del fordismo al posfordismo. Sin embargo, recientemente ha habido señales de que las empresas están mostrando una vez más apetito por la innovación y de que hay un compromiso renovado por parte del Estado para apoyar los avances tecnológicos y la digitalización de las empresas. Después de detallar las características distintivas del sistema de innovación italiano, describimos las sorprendentes mejoras en la propensión digital y la capacidad de innovación que las empresas italianas han logrado en los últimos años. En general, como mostramos, el sistema económico italiano se ha beneficiado de la “dinámica generativa” desencadenada, primero, por la Gran Recesión de 2008 y, después, por la crisis pandémica de 2020. Además, discutimos el papel de las políticas públicas en la promoción del sistema de innovación italiano con un enfoque específico en la manufactura de media-alta tecnología.Este artigo procura esclarecer as profundas mudanças que estão ocorrendo no sistema de inovação italiano. Embora esse sistema tenha garantido um crescimento sustentado até os anos 1980, a competitividade do país nos setores de alta e média-alta tecnologia perdeu sua força com a mudança do fordismo para o pós-fordismo. Recentemente, no entanto, há sinais de interesse renovado em inovação por parte das empresas e e de um compromisso renovado por parte do Estado em apoiar os avanços tecnológicos e a digitalização das empresas. O artigo descreve, primeiramente, as características do sistema de inovação italiano e as significativas melhorias na propensão digital e na capacidade de inovação das empresas italianas nos últimos anos. Mostra a seguir que, de modo geral, o sistema econômico italiano se beneficiou da “dinâmica generativa” desencadeada, primeiro, pela Grande Recessão de 2008 e, depois, pela crise pandêmica de 2020. Discute, também, o papel das políticas públicas na promoção do sistema de inovação italiano, com foco específico na indústria de média e alta tecnologia

    The Systematic Design of Industrial Products through Design Archetypes: An Application on Mechanical Transmissions

    Get PDF
    Engineering design is a knowledge intensive activity for both new and mature technical systems, such as mechanical transmissions. However, design knowledge is often transferred with conservative and unstructured approaches, although knowledge management would be of the utmost importance for modern industries. In this work, we introduce a design tool, called design archetype, for collecting and managing knowledge in systematic design processes. The design archetype addresses input design requirements for different design concepts, therefore, improving awareness of the design process by interactively modifying the design solution due to different input requirements. Finally, the design archetype updates the parameters of a first embodiment computer-aided design model of the concept. A method for the development of design archetypes is presented and applied to two case studies of mechanical transmission subassemblies. The results demonstrate the effectiveness of a systematic design method based on design archetypes stored in the company database

    An Augmented Reality Application for the Visualization and the Pattern Analysis of a Roman Mosaic

    Get PDF
    The visualization and analysis of mosaics and pavements are often compromised by their large sizes, which do not enable the observer to perceive their whole arrangement or to focus on details placed in farthest areas from its boundaries. Moreover, the usual precarious state of conservation of these artefacts, often with damaged or missing areas, makes it difficult to perceive their original aesthetic value. To overcome these limitations, we propose an application of augmented reality able to support the observer in two ways: first, the application completes the missing surface of the mosaic or pavement by integrating the existent surface with a virtual reconstruction; second, it enables the analysis of the geometric pattern of the mosaic/pavement by overlaying virtual lines and geometric figures in order to explicit its geometric arrangements. The result is achieved via a custom Android application able to recognize and track the mosaic figure pattern and extra marker board, obtaining in that way a coordinate system used to render in real-time the reconstruction of the mosaic. Such rendering is overlaid to the video stream of the real scene. The application runs on a standard smartphone embedded in a Google Cardboard-compatible viewer and therefore is extremely affordable. As a case study, in order to reconstruct its aspects and to analyse its geometric pattern, we chose the roman mosaic re-found in Savignano sul Panaro (near Modena, Italy) in 2011, after 115 years from its first discovery, which is preserved less than half of its original 4.5 x 6.9 m surface

    Genetic algorithm optimization and robustness analysis for the computer aided design of fixture systems in automotive manufacturing

    Get PDF
    Fixture Systems (FSs) have great importance in machining, welding, assembly, measuring, testing and other manufacturing processes. One of the most critical issue in FS design is the choice of both the type of fixing devices such as clamps, locators, and support points, (configuration), and their arrangement with respect to workpieces (layout). Several authors deal with the problem of determine the most suitable solution for FSs, often investigating their layout without considering the change of the type of locators. A computer aided design method is proposed to compare and evaluate different configurations for a FS, optimizing the locator type and analysing the roboustness of the solution. A multi-objective optimization based on a genetic algorithm is presented and the selection of the most suitable configuration is performed through the definition of robustness indexes. The effectiveness of the design method is demonstrated for an automotive case study
    corecore